# **JGE05**

#### Geotechnical Software

Software

# FEM – Fundamentals Tomáš Janda

www.finesoftware.eu









• Settlement





Geotechnical Software www.finesoftware.eu



fine

• Retaining walls



**GEO5** 

Geotechnical Software www.finesoftware.eu





• Slope stability





Geotechnical Software www.finesoftware.eu





• Tunnels



#### 







Geotechnical Software www.finesoftware.eu C C O M P U T E R S

fine

• Transient water flow through an earth dam



www.finesoftware.eu

#### Outline

- 2 slides of theory
- Advantages vs. limitations
- Essential terms and principles
- Universal rule of FEM modeling
- FE mesh
- Stability



Geotechnical Software www.finesoftware.eu





#### GEO 5 FEM - Theory

- Finite Element Method
  - Gives approximate solution to boundary value problem for partial differential equations.
- Boundary value problem



GEO5

Geotechnical Software www.finesoftware.eu

Fine Civil Engineering Software

fine

#### GEO 5 FEM - Theory

- Partial differential equation (PDE)
- Fulfilled at every point
- Various problems  $\rightarrow$  various types of PDE
  - Mechanical
    - Static equations:  $\partial \sigma + X = 0$
    - Stress strain relationship:  $\boldsymbol{\sigma} = \boldsymbol{D}(\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}_0)$
    - Geometric equations:  $\boldsymbol{\varepsilon} = \boldsymbol{\partial}^T \boldsymbol{u}$
  - Water flow
    - Continuity equations:  $n \frac{\partial S}{\partial t} + \nabla [nS \boldsymbol{v}^w] = m$

• Darcy law: 
$$nS \boldsymbol{v}^w = -\frac{K_r}{\gamma_w} (\nabla p - \gamma_w \boldsymbol{i}_g)$$

GEO!

# FEM vs. Design codes

FEM analysis approximate the *physics* behind the behavior of the structure

#### **Advantages**

- Arbitrary geometry
- Multiple phenomena
- Very flexible models
- Helps you to understand the behavior

Geotechnical Software

www.finesoftware.eu

**Universal principles** 

#### Limitations

- No safety coefficients
- No design/characteristic values
- No design standards •
- Not always on safe side
- Simplifications have to be • made

# Essential treminology

- Force, displacement, stress, strain, pressure
- Stiffness, strength
- 2D, plane strain, axisymmetry
- Boundary conditions
- Construction/calculation stages
- First stage, initial geostatic stress
- Groundwater







# Force, loading, surcharge

• Units [kN]



- Force per running, square or cubic meter
- Distributed loading, specific weight, ...
- Units: [kN/m, kN/m<sup>2</sup>, kN/m<sup>3</sup>]



fine

#### Displacement

- Change in position
- Vector quantity:  $d_x$ ,  $d_z$
- Units [mm]
- Vertical displacement = settlement



• I will avoid using the term "deformation"



Geotechnical Software www.finesoftware.eu



fine

#### Stress $\sigma$

- Quantity at material point level
- Units [kPa]
- Tensorial it has components
  - Normal stress  $\sigma_{\chi}$ , ...
  - Shear stress  $au_{\chi_Z}$ , ...
- Invariants

HI.

– Mean stress  $\sigma_m$ 

Geotechnical Software

www.finesoftware.eu

– Equivalent deviatoric stress J







#### Strain $\varepsilon$

- Change in shape and size of small piece of material
- Units [%]
- Tensor quantity
  - Normal strain  $\varepsilon_x$ , ...
  - Shear strain  $\gamma_{xz}$ , ...
- Invariants

CI I I

- Volumetric strain  $\varepsilon_v$
- Equivalent deviatoric strain  $E_d$







#### Stiffness

- At material level
  - Hooke's law of elasticity

 $\sigma = D\varepsilon$ 

- Stiffness parameters
  - Young's modulus *E* [kPa]
  - Shear modulus G [kPa]
  - Poisson's ratio  $\nu$  [–]



- Structure with low stiffness will deform excessively
- Stiffness is different from strength

Geotechnical Software www.finesoftware.eu

GEO5





# Strength

- Stress level at failure
- Strength depends on material model
  - Elastic model infinite strength
  - Mohr-Coulomb:
    - Angle of internal friction  $\varphi$
    - Cohession *c*
- Low strength → high plastic strain, unstable structure, failure







# Plasticity

- Elastic strain reversible
  - Deformation of the soil's grains itself
- Plastic strain irreversible
  - Change in arrangement of the soil's grains
- High plastic strains  $\rightarrow$  problematic areas
- Equivalent deviatoric plastic strain  $E_{d.pl}$





Geotechnical Software www.finesoftware.eu

fine

#### 2D analysis

- Real world is 3D
- Most real word structures can be represented with 2D model (pile walls, row of anchors, ...)

Plane-strain









# **Boundary conditions**

- Prevent or prescribe displacement or rotation
- "Supports"
- Point supports

| New point suppo                | ort                   | ×                                  |
|--------------------------------|-----------------------|------------------------------------|
| - Point                        |                       |                                    |
| Mesh point :                   | Point 47              |                                    |
| - Support                      |                       |                                    |
| Direction X :<br>Direction Z : | free<br>fixed         | * <b>u</b>                         |
| About Y :                      | deformation<br>spring | +w <sup>1</sup>                    |
|                                |                       | 뤽 <sub>K</sub> Add + Clos X Cancel |

#### • Line supports

- Added automatically at the bottom and lateral boundaries
- Might be edited by user



fine

Fine Civil Engineering Software



#### Construction/calculation stages

- Incremental solution strategy
- Stages are not variants (order matters)



🜌 GEO5 🖁

Geotechnical Software www.finesoftware.eu



fine

#### **Construction stages**

#### Cut and cover tunnel





Geotechnical Software www.finesoftware.eu



fine

#### First stage

- Special stage to create initial geostatic stress
- To ways to do that:
  - Load the domain with gravity
  - Get vertical stress from unit weight and horizontal stress from coefficient of lateral pressure  $K_0$

| T.                                                                                      | Project parameters |                      |   | - Design standards    |                    |  | Advanced program options            |
|-----------------------------------------------------------------------------------------|--------------------|----------------------|---|-----------------------|--------------------|--|-------------------------------------|
|                                                                                         | Project type :     | Plane strain         | - | Concrete structures : | EN 1992-1-1 (EC2)  |  | Advanced mesh generating parameters |
|                                                                                         | Analysis type :    | Alysis type : Stress |   |                       |                    |  |                                     |
|                                                                                         | ✓ Tunnels          | L                    |   | Analysis method :     | Geostatic stress   |  | Advanced soil models                |
| Allow to input water as the result of steady state water flow analysis Geostatic stress |                    |                      |   |                       |                    |  | Temperature load                    |
|                                                                                         |                    |                      |   |                       | Apply Ko procedure |  | Detailed results                    |
| sõu                                                                                     |                    |                      |   |                       |                    |  |                                     |
| ₽.                                                                                      |                    |                      |   |                       |                    |  |                                     |

Displacement is zeroed in firs stage (undeformed state)

🖊 GEO





# Groundwater

 Karl von Terzaghi (1883–1963)
 Austrian civil and geotechnical engineer known as the "father of soil mechanics" born in Prague



- Terzaghi theory of effective stresses  $\sigma = \sigma' + u$
- All observable changes in soil are result on change in *effective* stress





#### Groundwater

- No water
- Prescribed GWT
- Detailed pore pressure field

- Materials
  - Drained permeable soil, pore pressure excess will dissipate
  - Undrained pore pressure excess is calculated, no volumetric strain







#### Golden rule of FEM modeling

#### Make your model as simple as possible, but not simpler

#### $(3D \rightarrow 2D, simple topology, material model)$

#### Everything should be made as simple as possible, but not simpler–Albert Einstein



Geotechnical Software www.finesoftware.eu





- Avoid pointy triangles
  - Refine mesh adequately
  - Modify topology





Geotechnical Software www.finesoftware.eu AUTHORISED RESELLER



- Avoid pointy triangles
  - Refine mesh adequately
  - Modify topology



- Avoid pointy triangles
  - Refine mesh adequately
  - Modify topology



Fine Civil Engineering Software



• Overly complicated topology





Geotechnical Software www.finesoftware.eu





• Overly complicated topology



GEO5

Geotechnical Software www.finesoftware.eu





• Overly complicated topology



**GEO5** 

Geotechnical Software www.finesoftware.eu AUTHORISED RESELLER

PUTERS

M



#### FE mesh

• This mesh looks OK





Geotechnical Software www.finesoftware.eu



#### FE mesh

• This mesh looks OK





Geotechnical Software www.finesoftware.eu **AUTHORISED RESELLER** 

0 M

PUTE

R S



# Stability analysis

Strength reduction method

Analysis converge  $\rightarrow$  equilibrium  $\rightarrow$  stable structure No convergence  $\rightarrow$  unstable structure

- Strength parameters  $\varphi$  and c are decreased to get unstable state
- Factor of safety

$$FS = \frac{\varphi_s}{\varphi_p}$$

 $\varphi_s$  ... real angle of internal friction

 $\varphi_p$  ... reduced angle of internal friction at failure

Geotechnical Software





# Stability analysis

- Results
  - Examine the equivalent deviatoric plastic strain  $E_{d,pl}$
  - Shear band = slip surface
  - Not clear failure mechanism  $\rightarrow$  not reliable FS



# Stability

- Not clear failure mechanism  $\rightarrow$  not reliable FS
- Distribution of  $E_{d,pl}$





Geotechnical Software www.finesoftware.eu





#### Stability

- Finer mesh
  - $\rightarrow$  slightly smaller *FS*
  - $\rightarrow$  slightly narrower plastic zone



**GEO5** 

Geotechnical Software www.finesoftware.eu

Fine Civil Engineering Software

fine



#### **EISEKO COMPUTERS S.R.L.**

Viale del Lavoro, 17 37036 S. Martino B.A. (VR) tel. + 39 045 8031894 <u>www.eiseko.it</u>



#### Tel. 045 8031894





support@eiseko.com

Assistenza Remota



Geotechnical Software www.finesoftware.eu



