GE05

Geotechnical Software

FEM - elements, materials

Tomáš Janda

www.finesoftware.eu

Outline

- Finite elements
- Structural elements
- Contacts
- Constitutive models (materials)
 - Elastic model, Modified elastic
 - Mohr-Coulomb, Drucker-Prager
 - Advanced models
- Driven tunnels
- Solution strategies, solver parameters

EO5 Geotech

Geotechnical Software www.finesoftware.eu

Finite elements

Rod elements – anchor, geo-reinforcement or prop

5

Geotechnical Software www.finesoftware.eu

fine

- Beams in 2D = Walls in 3D
- Bending and normal stiffness per running meter
- Predefined types of cross section and materials
- Output: bending moment, normal and shear force, deflection

- Beams in 2D = Walls in 3D
- Bending and normal stiffness per running meter
- Predefined types of cross section and materials

- Beams in 2D = Walls in 3D
- Bending and normal stiffness per running meter
- Predefined types of cross section and materials
- Output: bending moment, normal and shear force, <u>deflection</u>

- Cross-section and material					
Cross-section type :		 Material type 	e : concrete	-	
	rectangular wall pile curtain sheet pile steel cross-section numerical input	Name :	C 25/30	User	
		02.0 733.5			
		-153.0	218.5		
OFOF	Geotechnical Software		CICEVO		fine
GEO5	www.finesoftware.eu			s Fi	ne Civil Engineering Software

- Beams in 2D = Walls in 3D
- Bending and normal stiffness per running meter
- Predefined types of cross section and materials

Structural elements – anchors

- Pre-stressed rod elements
- Free elements, not connected to FE mesh,
 - independent on topology, add at any stage
- Defined by
 - Pre-stress force, tensile strength, tensile stiffness

Geotechnical Software www.finesoftware.eu

Structural elements – anchors

fine

Structural elements - reinforcements

• Geotexiles, geogrids

Geotechnical Software www.finesoftware.eu AUTHORISED RESELLER ISEKO

Contacts

Constitutive models

• Define stress-strain relationship

• Elastic models

C Z O

- Elasto-plastic models of Mohr-Coulomb family
- Models of critical state

Geotechnical Software www.finesoftware.eu

Elastic model

- Elastic model Hooke's law Constant stiffness, *E*, *v* Infinite strength Numerically stable
- Modified elastic model
 Initial loading modulus E
 Unloading/reloading modulus E_{ur}
 Rule of thumb:

$$E_{ur} = 3E$$

Fine Civil Engineering Software

Geotechnical Software www.finesoftware.eu

Mohr-Coulomb family of models

- Elasto-plastic models
- Elastic region given by yield surface in stress space
- Constant stiffness in elastic region
- Limit deviatoric stress J increases with compressive mean stress $-\sigma_m$

Angle of dilatancy

- Controls the volumetric plastic strain
- Dense soil tend to dilate
- Default value $\psi = 0^{\circ}$

www.finesoftware.eu

• Typical range $\psi = \langle 0^{\circ}, 5^{\circ} \rangle$

M-C hardening/softening

- Advanced material model feature
- Strength parameters depend on plastic strain
- $\varphi = \varphi(E_{d,pl}), c = c(E_{d,pl})$
- Defined as piecewise linear function

Tension cutoff

Limits the tensile stress that is allowed due to cohesion

Geotechnical Software www.finesoftware.eu

fine

Critical state model

- They define "state" of the soil
 - Degree of "compactness"

– Void ratio
$$e = \frac{V_p}{V_s}$$

- Shearing of dense sand \rightarrow dilatation
- Shearing of loose sand \rightarrow compaction
- Stiffness depends on

Geotechnical Software

www.finesoftware.eu

- Void ratio
- Stress
- Non-standard material parameters, lab. tests

Critical state models

Critical state models

Constitutive models - application

Elastic model

Linear stress/strain relation, infinite strength

Modified elastic model

- Unloading/reloading modulus, infinite strength

Mohr-Coulomb

- Shear failure, most standard model

• Modified M-C, Drucker-Prager

- Smooth yield surface \rightarrow better numerical stability

- Critical state models
 - Very loose/dense soil, significant volumetric strain

GEO5

Geotechnical Software www.finesoftware.eu

Effect of mode size

Simple elastic analysis of a shallow excavation

Plot of horizontal displacements

Elastic analysis of tunnel excavation

Plot of vertical displacements

fine

Fine Civil Engineering Software

Slope stability analysis

Plot of an equivalent plastic strain

GEO5

Geotechnical Software www.finesoftware.eu

Driven tunnels

- How to model clearly 3D structure in 2D?
- Two limit states in 2D

Geotechnical Software www.finesoftware.eu

fine

Driven tunnels

- Convergence confinement method (λ -method)
- This function is called "Excavations" in Geo5 FEM

fine

Driven tunnels

• Sequential application of "excavation forces"

Geotechnical Software

www.finesoftware.eu

AUTHORISED RESELLER

fine

Nonlinear solver

Newton-Raphson iteration scheme

- Most often used
- May fail when close to the limit load
- May fail when the load increment is too large

Arc-length method

GEO

- Useful when searching for the maximum or limit load
- In general more time consuming
- May fail when the load increment is too large

Both methods can be combined with the Line search method to stabilize the iteration process

Geotechnical Software www.finesoftware.eu

EISEKO COMPUTERS S.R.L.

Viale del Lavoro, 17 37036 S. Martino B.A. (VR) tel. + 39 045 8031894 <u>www.eiseko.it</u>

Tel. 045 8031894

support@eiseko.com

Assistenza Remota

Geotechnical Software www.finesoftware.eu

